
Case Study:
Volume Populators for Virtual Disks?

Arik Hadas
Associate Manager and Principal Software Engineer 



My journey at Red Hat

I have been working at Red Hat for over a decade:

⚬ 2012 - 2018  oVirt / Red Hat Virtualization

⚬ 2018 – 2019  KubeVirt / OpenShift Virtualization

⚬ 2019 – 2020  Other (non-virtualization) OpenShift areas

⚬ 2020 – 2022  oVirt / Red Hat Virtualization

⚬ 2022 –           Forklift / Migration Toolkit for Virtualization



Forklift / MTV

Forklift is an extension to Kubernetes that migrates virtual machines to KubeVirt / OpenShift 
Virtualization from traditional virtualization platforms

           Forklift 2.4:

⚬ vSphere

⚬ oVirt / Red Hat Virtualization

⚬ OpenStack / Red Hat OpenStack Platform

Designed for Mass Migration of VMs

What is it about?

          Planned in Forklift 2.5:

⚬ OVA

⚬ KubeVirt to KubeVirt



"Migrate virtual machines at scale to OpenShift in a few 
simple steps. Provide source and destination credentials, 
map infrastructure, and create migration plans"

MTV’s mission statement



How to start a migration in Forklift

Few simple steps using an easy to use UI

■ Define a source provider

■ Define a target provider (optional)

■ Create a migration plan

○ Select virtual machines

○ Set Network mappings

○ Set Storage mappings

■ Start the migration plan



Few simple steps using an easy to use UI

■ Define a source provider

■ Define a target provider (optional)

■ Create a migration plan

○ Select virtual machines

○ Set Network mappings

○ Set Storage mappings

■ Start the migration plan

How to start a migration in Forklift



Few simple steps using an easy to use UI

■ Define a source provider

■ Define a target provider (optional)

■ Create a migration plan

○ Select virtual machines

○ Set Network mappings

○ Set Storage mappings

■ Start the migration plan

How to start a migration in Forklift



Few simple steps using an easy to use UI

■ Define a source provider

■ Define a target provider (optional)

■ Create a migration plan

○ Select virtual machines

○ Set Network mappings

○ Set Storage mappings

■ Start the migration plan

How to start a migration in Forklift



Few simple steps using an easy to use UI

■ Define a source provider

■ Define a target provider (optional)

■ Create a migration plan

○ Select virtual machines

○ Set Network mappings

○ Set Storage mappings

■ Start the migration plan

How to start a migration in Forklift



Few simple steps using an easy to use UI

■ Define a source provider

■ Define a target provider (optional)

■ Create a migration plan

○ Select virtual machines

○ Set Network mappings

○ Set Storage mappings

■ Start the migration plan

How to start a migration in Forklift



Few simple steps using an easy to use UI

■ Define a source provider

■ Define a target provider (optional)

■ Create a migration plan

○ Select virtual machines

○ Set Network mappings

○ Set Storage mappings

■ Start the migration plan

How to start a migration in Forklift



Finally: virtual machines in KubeVirt

The migrated VMs can start in containers within the target k8s / OpenShift cluster



But what happens in between?
What is going on during the migration

■ Disks are converted (optional)

■ Disks are copied

■ VM configuration is converted



But what happens in between?
Our focus today

■ Disks are converted (optional)

■ Disks are copied

■ VM configuration is converted



Volume populators



The volume populators feature
Setting up PVC and data source CR

cr



The volume populators feature
Let’s use this PVC



The volume populators feature
What happened behind the scenes #1

controller

example-pvc

Detect

Based on
kubernetes-csi/lib-volume-populator

https://github.com/kubernetes-csi/lib-volume-populator


The volume populators feature
What happened behind the scenes #2

controller

example-pvc

Read

example-hello
cr

Read



The volume populators feature
What happened behind the scenes #3

controller

example-pvc prime-example-pvc

Create
Create

populator



The volume populators feature
What happened behind the scenes #4

controller

example-pvc

Write populator

prime-example-pvc



The volume populators feature
What happened behind the scenes #5

controller

example-pvc

Attach



Volume populators in Forklift

controller

example-pvc

Write populator



Looks familiar?



Implementation with CDI

controller

example-pvc

 importerWrite

CDI == Containerized Data Importer



Containerized Data Importer (CDI)
What is it about?

■ Importing data to k8s/Openshift
○ Predated volume populators

■ Based on Data Volume

■ Supports additional sources

■ Used by Forklift

○ Partially replaced in Forklift 2.4



Extension to Kubernetes
Importer per-disk

Supports multi-stage (warm) migration
Implementation of client code in Go

Extensible
Integrated in KubeVirt

PV allocation tailored to virtual disks

Comparison of both solutions

CDI

Integrated in Kubernetes
Populator pod per-disk

No support for multi-stage migration
Can use “native” clients

Pluggable
Integration in KubeVirt: WIP

No VM-awareness

Volume Populators



Extension to Kubernetes
Importer per-disk

Supports multi-stage (warm) migration
Implementation of client code in Go

Extensible
Integrated in KubeVirt

PV allocation tailored to virtual disks

Why did we choose volume populators

CDI

Integrated in Kubernetes
Populator pod per-disk

No support for multi-stage migration
Can use “native” clients

Pluggable
Integration in KubeVirt: WIP

No VM-awareness

Volume Populators



Our volume populators



Volume populator for oVirt / RHV
The forklift-controller creates relevant resources during migration 

forklift-controller

virtual-diskOvirtVolumePopulator
cr

credentials



Volume populator for oVirt / RHV
The populator-controller detects PVC + ovvp and create populator pod and prime-PVC 

virtual-disk

prime-virtual-disk

populator-controller 

OvirtVolumePopulator
cr

credentials

populator



Volume populator for oVirt / RHV
The populator pod copies the data using ovirt-img and reports progress 

prime-virtual-disk

populator-controller

credentials
# ovirt-img download-disk --output json \  
     … --engine-url=<url> <diskID> <volPath>

 

populator



Volume populator for OpenStack
The forklift-controller creates relevant resources during migration 

forklift-controller

virtual-disk
OpenstackVolumePopulator

crcredentials



Volume populator for OpenStack
The populator-controller detects PVC + osvp and create populator pod and prime-PVC 

virtual-disk

prime-virtual-disk

populator-controller

credentials
OpenstackVolumePopulator

cr

populator



Volume populator for OpenStack
The populator pod copies the data using Gophercloud and reports progress 

prime-virtual-disk

populator-controller

credentials
io.Copy(file, &countingReader)

populator



Achievements

■ Improved migrations from oVirt / RHV

○ Transfers were accelerated

○ Added “insecure transfers”

○ Can potentially deprecate CDI code

■ Introduced migrations from OpenStack

○ Similar transfer mechanism to that of oVirt / RHV

○ Without adding code to CDI



 Challenges and Insights



Delegate volume allocation to CDI

We planned to create Data Volumes with source = Blank



Delegate volume allocation to CDI

We planned to create Data Volumes with source = Blank

However, this ended up in the populated data being overridden by CDI with empty data

prime-example-
pvc

Write

Data volume

importerWritepopulator



Delegate volume allocation to CDI

We planned to create Data Volumes with source = Blank

However, this ended up in the populated data being overridden by CDI with empty data

As a result, we create PVCs instead

… and had to implement similar logic for:

● Access modes
● Disk overhead



Progress reporting

Copying data from remote environments can take significant time (few hours)

Thus we report the progress of the data transfer during the migration



Progress reporting

Copying data from remote environments can take significant time (few hours)

Thus we report the progress of the data transfer during the migration

Attempt #1: Update the CR

prime-virtual-disk

OvirtVolumePopulator
cr

Update

populator



Progress reporting

Copying data from remote environments can take significant time (few hours)

Thus we report the progress of the data transfer during the migration

Attempt #1: Update the CR - Requires a service account

prime-virtual-disk

OvirtVolumePopulator
cr

Update

populator



Progress reporting

Copying data from remote environments can take significant time (few hours)

Thus we report the progress of the data transfer during the migration

Attempt #1: Update the CR

Attempt #2: Push reports to the controller

prime-virtual-disk

Push

populator-controller

populator



Progress reporting

Copying data from remote environments can take significant time (few hours)

Thus we report the progress of the data transfer during the migration

Attempt #1: Update the CR

Attempt #2: Push reports to the controller -

       Requires the populator pod to ‘know’

       about the controller
prime-virtual-disk

populator-controller

Push

populator



Progress reporting

Copying data from remote environments can take significant time (few hours)

Thus we report the progress of the data transfer during the migration

Attempt #1: Update the CR

Attempt #2: Push reports to the controller

Attempt #3: Pull metrics from populator pods
prime-virtual-disk

populator

populator-controller

Pull



Progress reporting

Copying data from remote environments can take significant time (few hours)

Thus we report the progress of the data transfer during the migration

Attempt #1: Update the CR

Attempt #2: Push reports to the controller

Attempt #3: Pull metrics from populator pods
prime-virtual-disk

populator-controller

Pull

populator



Dynamic volume provisioning

Our populators worked well in our development environments



Dynamic volume provisioning

Our populators worked well in our development environments

However, migrations sometimes failed on QE environments

Further analysis revealed it failed on statically provisioned storage classes

● An issue in the lib-volume-populator library



Dynamic volume provisioning

Our populators worked well in our development environments

However, migrations sometimes failed on QE environments

Further analysis revealed it failed on statically provisioned storage classes

● An issue in the lib-volume-populator library

Discussed with maintainers of kubernetes-csi/lib-volume-populator

● Have not reached a consensus on a way to resolve this

Blocked use of volume populators for statically provisioned storage classes in Forklift 



Conversion of multi-volume disks

When converting a VM from vSphere, virt-v2v operates on an overlay

● To inspect the content of a disk
● To modify the content of a disk

Conversion of a single-volume disk can be implemented with a volume populator Remote volume

Overlay

virt-v2v



Conversion of multi-volume disks

When converting a VM from vSphere, virt-v2v operates on an overlay

● To inspect the content of a disk
● To modify the content of a disk

Conversion of a single-volume disk can be implemented with a volume populator

However, this breaks with multi-volume disks

virt-v2v

Remote volumes

Overlays



Conversion of multi-volume disks

When converting a VM from vSphere, virt-v2v operates on an overlay

● To inspect the content of a disk
● To modify the content of a disk

Conversion of a single-volume disk can be implemented with a volume populator

However, this breaks with multi-volume disks

Filed kubernetes-csi/lib-volume-populator#40

We think about modifying the code in (our fork of) lib-volume-populator

virt-v2v

Remote volumes

Overlays

https://github.com/kubernetes-csi/lib-volume-populator/issues/40


Migrations to remote clusters

When migrating to another cluster

1. The CR needs to be posted to this cluster
2. The populator pod needs to run on this cluster



Migrations to remote clusters

When migrating to another cluster

1. The CR needs to be posted to this cluster
2. The populator pod needs to run on this cluster

First question: how to define the CRD(s) on a remote cluster

Second question: where should the controller run



Migrations to remote clusters

When migrating to another cluster

1. The CR needs to be posted to this cluster
2. The populator pod needs to run on this cluster

First question: how to define the CRD(s) on a remote cluster

Second question: where should the controller run

Approach #1: CRDs would be defined and processed by controllers on the source cluster 



Migrations to remote clusters

When migrating to another cluster

1. The CR needs to be posted to this cluster
2. The populator pod needs to run on this cluster

First question: how to define the CRD(s) on a remote cluster

Second question: where should the controller run

Approach #1: CRDs would be defined and processed by controllers on the source cluster 

● Managing CRDs on a remote cluster is complex
● Reporting the progress to a remote cluster is challenging



Migrations to remote clusters

When migrating to another cluster

1. The CR needs to be posted to this cluster
2. The populator pod needs to run on this cluster

First question: how to define the CRD(s) on a remote cluster

Second question: where should the controller run

Approach #1: CRDs would be defined and processed by controllers on the source cluster 

Approach #2:: let CDI deploy CRDs and control the flow



Migrations to remote clusters

When migrating to another cluster

1. The CR needs to be posted to this cluster
2. The populator pod needs to run on this cluster

First question: how to define the CRD(s) on a remote cluster

Second question: where should the controller run

Approach #1: CRDs would be defined and processed by controllers on the source cluster 

Approach #2:: let CDI deploy CRDs and control the flow (WIP)



More adaptations to migration flow

● Create populator pods in target namespaces

○ To ease debugging and cleanup (owner-references)

○ No need to hide prime-PVCs and populator pods

● Limit restarts of populator pods to 3 (by default)

○ To conclude migration failed and gather logs

● Correlate created resources with a migration using a label

○ For cleanup of migration resources

● Respect selected transfer network



Conclusion



So, volume populators for virtual disks?

■ Generally yes

○ We achieved the basic functionality for VM migration

○ Can be integrated into KubeVirt with CDI (WIP)

■ But doesn’t completely fit for VM migration

○ We had to introduce a variety of changes to the controller library

■ … and eventually forked it

○ Additional work is required for advanced functionality

■ Remote migrations, warm migrations, conversion of multi-
volume disks



Questions?



Thank you!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

