Monitoring At Scale:

What was Recently Done and
What’s Next in oVirt

Arik Hadas

Principal Software Engineer
Red Hat
23/10/17

OSS Europe, October 2017

Wiy \What Do We Mean by “Monitoring”

* ldentifying the status of active entities
- VMs, Hosts, Storage domains

* Tracking resource consumption
- Memory, CPU, Disk space, ...

* Retrieving dynamic properties
— Client IP, Device addresses, ...

OSS Europe, October 2017

3 \Why is Monitoring Important

* Reflects the up-to-date status of the system
 Affects system responsiveness
* Provides data for automatic processes

- High availability
- Load balancing

OSS Europe, October 2017

Wil Monitoring At Scale

* The more entities to monitor, the more:
— Data to collect
- Data to process
- Data to store

“_ e 1 AF _ &
v g =
/]
- e Ty D=
. et Al Ll
.."""h.._ 'I"-r""'—_lf : J J)
l - o e~
T s \ i \ e
‘-\\W_!.!__,_...—F" - l“/}‘].I 1: l.l ’I
- e R
N J .]
S T ST

OSS Europe, October 2017

Wil Problem: Low Performance

* Monitoring
— Continuous operation
- Runs in the background

* In large scale deployments monitoring may
consume a lot of resources

— Leads to various anomalies

OSS Europe, October 2017

Wl Our Solution

* Relatively simple changes
— No architectural change
- No major change in technology
* We noticed a significant improvement

OSS Europe, October 2017

W Outline

* Introduction to oVirt

* VMs monitoring in large scale deployments
* Improving the monitoring process

* Measurements

* Future work

OSS Europe, October 2017

Wi \What Is oVirt?

Large scale, centralized
management for server and
desktop virtualization

Based on leading performance,
scalability and security
Infrastructure technologies

Provide an open source
alternative to vCenter/vSphere

Focus on KVM for best
Integration/performance

Focus on ease of
use/deployment

OSS Europe, October 2017

e Architecture View

Web Browser Web Browser
Administration Portal CLI Shell REST API User Portal

Storage
Domain

Directory Service

Active Directory

IPA
Red Hat Directory Server

IBM Tivoli Directory Server

Web Service

Web App - y

[
-—

H " JBoss Backend

. @ by Red Hat

Gm——
Console
| oVirt Englne \ Access
E ‘

PostgresSQL Y
BW ribvirt BW ribvirt S

pra—

1 e

mmmm SOAP - Internal Web Service
i 11
=== HTTPS

s SSH /7 SSL Linux + oVirt Packages oVirt Node

OSS Europe, October 2017

e \\'ebadmin - Screenshot

Irt OPEN VIRTUALIZATION MANAGER

Compute

Virtual Machines

Comment Host

https://192.168.201.4/ovirt-engine/webadmin/?locale=en_US#vms

New VM | | Edit || Remove || B Run @ Suspend | | MShutdown | ~ | | C'Reboot || Ld Console | -~ Migrate | | Create Snapshot | §

Cluster

1-3 | <|>
Data Center Memory CPU

Network Graphics Status

Uptime Description
e O O 2 S S Y I
test-cluster test-dc - - - None Down Cirr0S imported from ...
test-cluster test-de None Down

OSS Europe, October 2017

Wil Feagture-Rich Platform

Engine

Integration
Nvidia

" Direct
LUNSs

Hot Plug - Network
CPU Filtering

Hostdev Live ,; Neutron
Passthrough Snapshots Integration

S

V2V

VM
Mlgratlon

OSS Europe, October 2017

Wil Feagture-Rich Platform

o N

Hosted
Engine
Foreman
Integration
Gluster
Support Direct

~ LUNs

Hot Plug - Network
CPU Fllterlng /

* Less attention to scale

Neutron
Integratlon

Passthrough Snapshots

Hostdev 1 Live J

Nvidia
GPU

Mlgratlon

OSS Europe, October 2017

W Outline

* Introduction to oVirt

* VMs monitoring in large scale deployments
* Improving the monitoring process

* Measurements

* Future work

OSS Europe, October 2017

Wi \/Ms Monitoring

* Focus on monitoring of virtual machines

- Far more instances than any other entity
* This includes:

- Status

— Dynamic properties (i.e., client IP)

— Devices information

- Statistics

OSS Europe, October 2017

2 \V/Ms Monitoring Model Before v3.6

* Polling based mechanism

* Every 3 sec, for each host:
- The engine queries VMs from the database
— The engine polls information on running VMs

- The engine persists data that has changed
 Every 5" cycle includes statistics

OSS Europe, October 2017

Wil \VMs Monitoring Model Before v3.6 (2)

* Hosts are locked during monitoring cycles

- To prevent operations on VMs in parallel
» Dynamic properties are compared via reflection
* VM statistics are not being compared

- They almost always change

* Devices are polled separately when their hash
changes

OSS Europe, October 2017

Wil \VMs Monitoring Model Before v3.6 (3)

* Problems in very large scale deployments
- Monitoring cycles were skipped
- High CPU consumption

- High load on the database

OSS Europe, October 2017

i Proposed Solutions

* Add a global caching layer

- To reduce interactions with the database

— Does not solve the high CPU consumption
* Distribute the monitoring process

— Addresses the high CPU consumption

- Does not reduce the load on the database
» Both solutions were too complex

OSS Europe, October 2017

W Outline

* Introduction to oVirt

* VMs monitoring in large scale deployments
* Improving the monitoring process

* Measurements

* Future work

OSS Europe, October 2017

Wi [ssue #1: Too Many Writes to DB

- Static data is not monitored
* Devices rarely change
- Statistics change in each cycle

* Some of the dynamic data
(reported data) might change

- Not often though

VM

Reported data (i.e., client IP) + =

Not reported data (i.e., stop reason) \

OSS Europe, October 2017

Static Data

Devices

Statistics

Dynamic Data

Wi Reduce Number of Writes

* Introduce @UnchangeableByVdsm
- Marks properties that are not reported

private String currentCd;
@UnchangeableByVdsm
private String stopReason;

private VmExitReason exitReason;

* Move frequently changed fields to the stats
- E.g., guest memory cached/buffered/free

OSS Europe, October 2017

Wi Separate Out Devices Monitoring

* Devices hash was stored with the dynamic data

- Consequently, change of one device
triggered persistency of all dynamic data

* Solution: store the devices hash separately

OSS Europe, October 2017

Wi |ssue #2: Too Many Reads from DB

* Many connections with DB are used
* Long time is spent on quering the DB
* Even when no data (except stats) is changed!

OSS Europe, October 2017

W Fliminate Redundant Queries

* Optimize the code to skip unneeded data
processing (including queries from DB)

* For example, skipping redundant VM numa
nodes processing eliminated the following
DB interactions:

Average time (micro-sec) Overall time (micro-sec)
« 261 to get numa nodes by host « Getting numa nodes by host—3% (48,546 msec)
« 259 to get assigned numa nodes « Getting assigned numa nodes—3% (48,201 msec)

« 255 to get numa node CPU by host « Getting numa node CPU by host—3% (47,569 msec)
« 246 to get numa node CPU by VM « Getting numa node CPU by VM—2% (45,918 msec)
+ 242 to get numa nodes by VM « Getting numa nodes by VM—2% (45,041 msec)

OSS Europe, October 2017

Wil \emorization

* Apply memoization to repeated queries

public class MemoizingSupplier<T> implements Supplier<T:» {
private final Supplier<T> delegate;
private boolean initialized;

private T walue;

public MemoizingSupplier(Supplier<T> delegate) {
this.delegate = delegate;

public T get() {
if (!initialized) {
value = delegate.get();
initialized = true;

¥

return value;

OSS Europe, October 2017

Wiy Smart Caching

» Cache only relevant entity’'s properties

- E.g., static properties used by the monitoring
» Cache only relevant entities

- E.g., VM jobs (limited number of instances)
» Use DB for persistency, not as a bus of data

- E.g., VM statistics

OSS Europe, October 2017

g | ighter, Dedicated Queries

» Complicated queries take time
* Attempt #1: narrow down ‘vms’ view

> explain analyze select * from vms where ...
Planning time: 2.947 ms
Execution time: 765.774 ms

> explain analyze select * from vms_monitoring_view where ...
Planning time: 0.387 ms
Execution time: 275.600 ms

OSS Europe, October 2017

W | ichter, Dedicated Queries (2)

» Attempt #2: query only dynamic data

> explain analyze select * from vms_monitoring_view where ...
Planning time: 0.405 ms
Execution time: 275.850 ms

> explain analyze select * from vm_dynamic where ...
Planning time: 0.109 ms
Execution time: 2.703 ms

OSS Europe, October 2017

Wi [ssue #3: Locks Contention

* High contention between monitoring threads
and those executing operations on VMs

* During the execution of VM operations, the host
was locked to avoid monitoring the VM

- To prevent conflicts

OSS Europe, October 2017

3 Split VMs and Hosts monitoring

* Replaced host-level locks with VM-level locks
— VM operations lock VMs rather than hosts
— Monitoring locks each VM running on the host
* And skips those that cannot be locked

* That reduces contention rate on operations-
intensive deployments

OSS Europe, October 2017

Wi ssue #4: High UNIX Load

* The overall backend load was relatively high

- Even in stable deployment
* The monitoring was an immediate suspect

OSS Europe, October 2017

Wil Fyvents-Based Communication

* Replaced the polling-based backend<->host
protocol with events-based protocol

- Based on JSON-RPC instead of XML-RPC
* Hosts send events upon VM changes

- Less monitoring cycles and data to process
» Keep polling statistics cycles

- Statistics always change

- Compensate missing events

OSS Europe, October 2017

W Outline

* Introduction to oVirt

* VMs monitoring in large scale deployments
* Improving the monitoring process

* Measurements

* Future work

OSS Europe, October 2017

Wiy Case Study

* Deployment with 1 host running 6000 VMs
- 'Fake VMSs’

» Stable deployment
— No operation is done

* Measured 1 hour of uptime

» Compared versions 3.6 and 4.1
- Both used events

OSS Europe, October 2017

oVirt f@I™E,

3.6

®- () m— 79.0% - 2,297 s - 13,972 inv. org.ovirtengine core.utils timer.JobWrapper.execute
ﬂ-;]— () s 79 0% - 2,296 5- 13,972 inv. org.ovirtengine core.utils timer.JobWrapper.invo ke Method
- () m— 79 0% - 2,296 s - 13,972 inv. java.lang.reflect Method.invoke
> () w77 1% - 2,243 s - 504 inv, org.ovirttengine core vdsbroker, PollVmStatsRefre sher.poll
| © () W 49 9% - 1,451 5- 31 inv. org.ovirtengine core vdsbroker VmsMonitoring. pe rform
®- () W40 8% - 1,449 s - 31 inv. org.ovirtengine core. vdsbroker.VmsMonitoring.refreshVmStats
c;) G}- 30.8% - 896 s - 186,000 inv. org.ovirt.engine.core vdsbroker VmAnalyzer.analyze

4.1

() mmm 54.1% - 1,789 s - 18,547 inv. org.ovirtengine core.utils timer.JobWrapper.execute
4] g
B 54.1% - 1,789 5 - 18,547 inv. org.ovirtengine.core utils timer.JobWrapper.invo ke Method
g g P
- () . 64.1% - 1,789 s - 18,547 inv. java.lang reflect Method.invoke
() m 571.5% - 1,718 s - 549 inv. org.ovirt.engine core . vdsbroker.monitoring. PollVmStatsRefresher.poll
4* 9 ng
c%)— (L)W 31.6% - B81 s - 69 inv. org ovirtengine core vdsbroker.monitoring. VmsListFetcher fetch
()W 29.2% - 814 5 - 68 inv. org.ovirbengine.core vdsbroker. monitaring. VmsMonitoring. perorm
©- ()™ 24.6% - 687 s - 68 inv. org.ovirt.engine core vdsbroker.monitoring VmsMenitoring. analyzeVms

OSS Europe, October 2017

e CPU (2)

* Total CPU time reduced from 2297s to 1789s
(78%)

» Significantly less time in monitoring code
— Processing time reduced from 896s to 687s
- Persistence time reduced from 546s to 114s

- QOverall, 814s instead of 1451s (56%)

OSS Europe, October 2017

Wiy Database - Hot Spots

3.6 4.1

Self time « Selftime «
I 15 © (26 %) I 650 s (57 %)
I 137 s (8 %) B 161 s (14 %)
B 126 s (8 %) B 108 s (9 %)

B 113 s(7%)
B 101 s (6 %)
B ©58,485 ms (6 %)
B 52,493 ms (3 %)

B 59,130 ms (5 %)
B 54,691 ms (4 %)
B 37,159 ms (3 %)

B 48,546 ms (3 %) | 12,760 ms (1 %)
Bl 48,201 ms (3 %) | 8,769 ms (0 %)
Bl 47,569 ms (3 %) | 6,152 ms (0 %)
Bl 47,140 ms (3 %) 3,173 ms (0 %)
Bl 45918 ms (2 %) 2,476 ms (0 %)
Bl 45,041 ms (2 %) 2,384 ms (0 %)
Il 41,605 ms (2 %) 2,114 ms (0 %)
Il 38,669 ms (2 %) 1,949 ms (0 %)
B 35,487 ms (2 %) 1,579 ms (0 %)
B 26,609 ms (1 %) 1349 ms (0 %)

§ 16,192 ms (1 %)
113,713 ms (0 %)
| 6,037 ms (0 %)
| 5,807 ms (0 %)
| 5,739 ms (0 %)

1,167 ms (0 %)
1,058 ms (0 %)
999 ms (0 %)
983 ms (0 %)

OSS Europe, October 2017

Wil Database - Executed Statements

3.6

OSS Europe, October 2017

oVirt iBElEleEN=

* The time to query all VMs reduced from
3539ms to 909msec (26%)

* The time to save dynamic data in 3.6 was 101
sec (6%, 544 micro-sec on average), 0 in 4.1

— Similar results for other properties

* In overall, less use of the database

OSS Europe, October 2017

Wil Memory Consumption

3.6

OSS Europe, October 2017

» Surprisingly, less memory was consumed in 4.1
- In 3.6 it gets to ~1.45GB
- In4.11t gets to ~1.2GB

* Probably because of caching done by postgres

OSS Europe, October 2017

W Outline

* Introduction to oVirt

* VMs monitoring in large scale deployments
* Improving the monitoring process

* Measurements

* Future work

OSS Europe, October 2017

e Future Work

* Separate out statistics monitoring
* Apply similar principles to host monitoring
* Add caching of more entities
- Specifically, VM dynamic data (e.g., status)

OSS Europe, October 2017

Wl Conclusions

» Significant improvement shown in a case study

— All changes are available in version 4.1

* This required deep knowledge of the platform
— No shortcuts in the form of generic solutions
- No major technological change
— No architectural change

OSS Europe, October 2017

THANK YOU!

http://www.ovirt.org
ahadas@redhat.com
ahadas@irc.oftc.net#ovirt

OSS Europe, October 2017

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 46
	Slide 47

