
Arik Hadas
Dept. of Mathematics and Computer Science

The Open University of Israel

Joint Work With:

David H. Lorenz

Language Oriented Modularity:
 From Theory to Practice

Language Oriented Modularity (LOM)

● Traditional Process
– Modularize your concerns

with an (aspect) programming language
● The LOM Process

– Design (domain specific aspect) programming
languages for your concerns

LOM is a programming methodology that puts DSALs
at the center of the software modularization process

The Language Oriented Process

● Works middle-out
– Languages are tailored to the problem at hand

● Similar to LOP
– But with DSALs

Language Use Concise

Language Definition Expressive

Language Implementation Reusable

DSALs

● Domain Specific
● Domain-specific abstractions

● Aspect Oriented
● Modularization (weaving) mechanism

DSLs DSALsDSALs AOP
KALA

COOL
RIDL

AspectGrid

Racer

AO4SQL

In Principle: LOM is similar to LOP

DSLs DSALsDSALs AOP
KALA

COOL
RIDL

AspectGrid

Racer

AO4SQL

LOM: programming
 with aspect languages

LOP: programming
 with non-aspect

oriented languages

In Practice: LOM is not Cost-Effective

DSL DSAL

Implementation cost

Effective programming

● LOM is more costly than LOP
– DSALs are more complex to implement

● LOM is less effective than LOP
– The ease of using DSALs (w.r.t. GPALs) is lower

than the ease using DSLs (w.r.t. GPLs)

In Practice: LOM is not Cost-Effective

DSL DSAL

Implementation cost

Effective programming

● LOM is more costly than LOP
– DSALs are more complex to implement

● LOM is less effective than LOP
– The ease of using DSALs (w.r.t. GPALs) is lower

than the ease using DSLs (w.r.t. GPLs)

This Work:
Making LOM

Practical

Outline

● Motivation
● Problem
● Approach
● Validation
● Evaluation

The Need for DSALs

● Separation of crosscutting concerns
– Often the right tool for crosscutting concerns

found in modern software projects
● Domain-specific abstractions and notations

– Simpler than general-purpose aspect languages

DSL GPAL DSAL

Improved Modularity

Declarative & Simple Syntax

Why On-Demand DSALs?

● DSALs tend to be tightly coupled with the app
– Depend on the code structure
– Depend on the representation of data

● Less reusable across apps
– DSALs are typically application-specific

DSL DSAL

Reusable Across Applications

DSL Reuse

SELECT name FROM users WHERE user_id=<id>;

DSL code

Application 1

public void logName(Guid id) {
 String name = dao.getName(id);
 logger.log(“user “ + id + “: ” + name);
}

Application 2

public void foo(..) {
 // … skipped ...
 /* … */ dao.getName(id);
 // … skipped …
}

DSL can be reused
across applications

DSL Reuse

SELECT name FROM users WHERE user_id=<id>;

DSL code

Application 1

public void logName(Guid id) {
 String name = dao.getName(id);
 logger.log(“user “ + id + “: ” + name);
}

Application 2

public void foo(..) {
 // … skipped ...
 /* … */ dao.getName(id);
 // … skipped …
}

DSL can be reused
across applications

Aspect in a DSAL called muAudit

Aspect in a DSAL called muAudit

The Method that Starts File Jobs

Coupling of DSALs with the Base Code

Base Code

Aspect Code
DSALs cannot be

easily reused

Coupling of DSALs with the Base Code

Structure
Dependency

Data
Dependency

Base Code

Aspect Code
DSALs cannot be

easily reused

The Need for LOM

● The need for application specific DSALs
calls for LOM
– Having LOM for DSALs is even more

crucial than having LOP for DSLs
● The main obstacle

– Cost-effectiveness

Outline

● Motivation
● Problem
● Approach
● Validation
● Evaluation

DSALs are Second-Class

● Second-class DSLs
– More costly than ordinary DSLs

● Second-class aspect languages
– Less effective than ordinary DSLs

● Results in poor cost-effectiveness of LOM

Why DSALs are Second-Class DSLs

● Language workbenches ease DSLs creation
– Produce a parser for the custom syntax
– Produce a transformation to some GPL

● But LWs do not help with creation of DSALs
– Transformations of DSALs typically do not

preserve the join-point “finger print” (not
semantic-preserving)

– Without a transformation, the weaving semantics
are hard to implement

Multi-DSAL Conflicts

● Foreign Advising
– Advise written in one DSAL

advises a join point located
within an aspect written in a
different DSAL

● Co-Advising
– Multiple pieces of advice

written in different DSALs
advise the same join point
within the base code

DSAL-2DSAL-1

DSAL-2DSAL-1

Why DSALs are 2nd-Class Aspect Langs

● DSALs lack development tools
– Thus complex to edit, browse and compile

● Hinders effective use of DSALs
– Despite being simple and declarative

GPALs DSALs

Common Editing Tools

Aspect Development Tools

Build Tools

Tool Support for DSALs

CF = aspect Composition Framework

LW = Language Workbench

GPAL = General Purpose Aspect Language

This
Work

Outline

● Motivation
● Problem
● Approach
● Validation
● Evaluation

Key Idea

● Transformation of DSALs into a GPAL
annotated with metadata

– DSL-like development process for DSALs
– The use of tools available for the GPAL

Code
Transformation Code

Transformation

Weaver
Plugin

(1) Metadata for
 Handling Multi-DSAL Conflicts

● Hide join points from other DSALs
– Forgoing complete obliviousness to prevent

foreign advising conflicts
● Define advice-level ordering values

– Fine-grained advice ordering to prevent co-
advising conflicts

First-Class Equality with DSLs

● DSL-like Implementation process for DSALs
– Parsing the DSAL code
– Transforming DSAL code to a GPAL* code
– No compiler (weaver) modification

● DSL-like development tools for DSALs
– Leverage supportive tools by an existing

language workbench

DSAL
code GPAL*

code

Language Workbench

(2) Metadata for
Compatibility with GPAL Tools

● Preserve source code location
of advice during the
transformation

– To enable browsing and
navigation using GPAL tools

● Produce transformations that
can be invoked internally by
the compiler

– To enable compilation using
GPAL tools

DSAL code

GPAL
 code

DSAL code

GPAL
 code

First-Class Equality with Aspect Langs

● Leverage aspect development tools for GPAL
– Provide browsing and navigation for DSALs

● Leverage compilation tools for the GPAL
– Enable to build the app the same way with DSALs

● The language workbench produces IDE plugin
– Providing editing tools for DSALs

BytecodeBytecodeDSALDSAL
codecode GPAL* codeGPAL* code

AOP Compiler*AOP Compiler*

Outline

● Motivation
● Problem
● Approach
● Validation
● Evaluation

Extending AspectJ with Metadata

● We extended AspectJ
– Small set of annotations and interface

● We modified the ajc compiler
– One-time effort
– Minimal and optional modifications in case

they need to be redone in future releases
● We modified AJDT

– Minor adjustment

@Hide

@Target(ElementType.TYPE)
public @interface HideType {
 TypeJoinpoint[] joinpoints() default { TypeJoinpoint.PRE_INIT,
 TypeJoinpoint.INIT, TypeJoinpoint.STATIC_INIT,
 TypeJoinpoint.WITHIN_INIT, TypeJoinpoint.WITHIN_STATIC_INIT };
}

@Target(ElementType.METHOD)
public @interface HideMethod {
 MethodJoinpoint[] joinpoints() default { MethodJoinpoint.CALL,
 MethodJoinpoint.EXECUTION, MethodJoinpoint.WITHIN };
}

@Target(ElementType.FIELD)
public @interface HideField {
 FieldJoinpoint[] joinpoints() default { FieldJoinpoint.SET,
 FieldJoinpoint.GET };
}

Suppress join-points associated with
a particular program element

@Order

public @interface Order {
 double value();
}

Order advice according to the
value of the @Order annotation

@BridgedSourceLocation

public @interface BridgedSourceLocation {
 public String file();
 public int line();
 public String module();
}

Store the original location of
advice in the generated code

AJDT uses the location pointed
 to by this annotation, if it exists,
 as the source location of advise

Transformation

public interface Transformation {
 String extension();
 File convert2java(File input)
 throws Exception;
}

The compiler uses this interface to
 identify which files should be transformed

 (using the extension method) and to
transform them internally (convert2java)

Outline

● Motivation
● Problem
● Approach
● Validation
● Evaluation

Evaluation

● Experimental evaluation
– Implementing new crosscutting feature in

the muCommander project
– Separating existing crosscutting concerns

in the oVirt project
● Comparative evaluation

– Comparing the implementation of COOL
with its implementation in AWESOME

Case Study I:
LOM for muCommander

● We applied LOM to muCommander
– Implemented a new DSAL for an auditing

named muAudit
– Implemented aspect solution for auditing

of two file operations

About muCommander

Language Definition

Defined in the language grammar
 definition of Xtext

Language Use

AJDT markers are
Placed in the base code

AJDT markers are
Placed in the aspect code IDE for Eclipse was

generated by Xtext,
 providing editing tools

Language Implementation

Transformation with Xtend@Hide

@BridgedSourceLocation

Lessons from Case Study I

● Implementation in Xtext
– Complete implementation in an existing

language workbench, like that of a DSL
● Development tools for programming with

muAudit, like those available for a GPAL
– Editing tools and aspect dev. tools
– The project is compiled as if using AspectJ

● Cost-effective LOM process for a new
crosscutting feature (compared to LOP)

Case Study II: LOM for oVirt

● We implemented DSALs for 3 crosscutting
concerns found in the oVirt project
– Synchronization
– Permission checks
– Auditing

About oVirt

Scattered Code in oVirt
MigrateVmCommand AddDiskCommand

Auditing

Synchronization

Permissions

Tangled Code in oVirt

CommandBase

Permissions

Synchronization

Synchronization

Example: Using ovirtSync

Lessons from Case Study II

● Separated out crosscutting concerns
– Scattered code (over 25% of some classes) is

encapsulated in a separate module
– Tangled code is extracted from the root class

(over 12% from its LOC)
● Practical language development

– Few hours per DSAL with supportive tools
● Effective programming with multiple DSALs

simultaneously
– In a large-scale and complex project

 Implementing COOL

● Language implementation
– Implementation of a complex third-party DSAL

for thread synchronization
● Language use

– Implementation of an aspect solution for the
bounded-stack benchmark example

● Baseline for comparison
– The implementation of COOL in the AWESOME

composition framework

Synchronizing a Bounded-Stack

Avoid Multi-DSAL Conflicts

● Without @Hide
– Known multi-DSAL conflicts reproduced

● With @Hide
– Multi-DSAL conflicts not observed

Implementation Effort

● Our implementation vs. the alternative
– Significantly less code required
– More high-level

● AspectJ vs bytecode manipulation
– Language Workbench compatible

● Done completely in Spoofax

Related Work
● Domain Specific Aspect Languages

– [Fabry at al., 2015] A Taxonomy of Domain-Specific Aspect Languages.

● Transformation-based AOP Composition Frameworks
– [Shonle at al., 2003] XAspects: An extensible system for domain

specific aspect languages.

– [Tanter, 2006] Aspects of composition in the Reflex AOP kernel.

● The AWESOME Composition Framework
– [Kojarski and Lorenz, 2007] Identifying feature interaction in aspect-

oriented frameworks.

– [Kojarski and Lorenz, 2007] Awesome: An aspect co-weaving system
for composing multiple aspect-oriented extensions.

● SpecTackle
– [Lorenz and Mishali, 2012] SpecTackle: Toward a specification based

DSAL composition process.

Conclusion
● LOM can follow a similar process to LOP

– For a class of DSALs that are in a sense
reducible to a GPAL

● DSALs become cost-effective

– The implementation cost is reduced
– The effectiveness of using them is increased

● LOM becomes practical for real-world software
development process

The code is available on GitHub:

https://github.com/OpenUniversity/

Arik Hadas and David H. Lorenz
Dept. of Mathematics and Computer Science

The Open University of Israel

arik.hadas@openu.ac.il

https://github.com/OpenUniversity

Thank You!

mailto:arik.hadas@openu.ac.il

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

