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Motivation

“Explicit join points looks  
    interesting, let's evaluate it”

abc? AWESOME? 
Spoofax? xtext?



  

Our Research Goal

● Tool for the development, evaluation and 
production of extensions for AspectJ

– Like abc
● Workbench, not a compiler

– Provide common editing tools
– Compatible with AOP development tools 

● Generate production-ready extensions
– Work with a commonly used version of AspectJ
– Proper support for programming in multiple 

extensions simultaneously



  

 Limitations of the AspectBench 
Compiler (abc)

● Used to be the default choice for 
implementing AspectJ extensions 

● Not suitable for development of new 
extensions

– Does not work with recent versions of AspectJ

● Not suitable for evaluation of new 
extensions

– Does not provide development tools
– No support for advanced weaving semantics



  

Language Workbench (LW) for Java
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Will It Work for AspectJ?
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Replacing javac with ajc
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AOP Composition Framework (CF)
● To work with multiple AspectJ extensions 

simultaneously, one will need to define:

– Weaving semantics for co-advising
– Weaving semantics for foreign advising

● CF Allows to define the required semantics

– As opposed to ajc
● CF does not provide editing tools



  

LW vs CF
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Can We Enjoy Both Worlds?
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Defining weaving 
semantics needed for 
DSALs

  

Will a naive combination of the two be a 
proper solution?



  

Naive Combination of LW and CF
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But We Still Lack AOP Tools..

Language WorkbenchLanguage Workbench

DSAL Code

AspectJ

Woven Bytecode

 Composition Framework

Browsing

Debugging

Compiling



  

Traditional LW Architecture
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Our Workbench Architecture
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Validation

● We implemented a workbench
● We Implemented third-party extensions that 

were proposed to AspectJ
– COOL
– Closure Join Points (CJP)
– Explicit Join Points (EJP)

● Available as an open source
– https://github.com/OpenUniversity



  

Our Workbench Implementation
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Enhancing AWESOME
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AWESOME's Weaving Model

List<BcelShadow> around(MultiMechanism mm, LazyClassGen clazz):
    reifyClass(mm,clazz) { ... }

public List<IEffect> match(BcelShadow shadow) { ... }

public List<IEffect> order(BcelShadow shadow, List<IEffect> effects) { ... }

void around(MultiMechanism mm, List effects, BcelShadow shadow):
    execution(void MultiMechanism.mix(List, BcelShadow)) { ... }



  

Extended Weaving Model

public void preweave(List<ResolvedType> types) { ... }

List<BcelShadow> around(MultiMechanism mm, LazyClassGen clazz):
    reifyClass(mm,clazz) { ... }

public List<IEffect> match(BcelShadow shadow) { ... }

public List<IEffect> order(BcelShadow shadow, List<IEffect> effects) { ... }

void around(MultiMechanism mm, List effects, BcelShadow shadow):
    execution(void MultiMechanism.mix(List, BcelShadow)) { ... }



  

So I've been asked to implement EJP...

CJP
COOL
EJP

AWESOME*

Weaving

Compilation

Code Transformation
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Editing Tools
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CJP – Grammar Definition

sorts JoinpointDeclaration
   context-free syntax
      "exhibit" MethodName "(" {FormalParam ","}* ")" Block
           "("  {Expr ","}* ")" ->
            Expr{cons("ClosureJoinpoints")}
      "exhibit" MethodName Block ->
         Expr {cons("ShortClosureJoinpoints")}

      JoinpointDeclaration -> AspectBodyDec
      "joinpoint" ResultType Id "(" {FormalParam ","}* ")"   
          Throws? ";" ->                
          JoinpointDeclaration{cons("JoinpointDeclaration")}
      (Anno | MethodMod)* CJPAdviceSpec Throws? Block ->
         AdviceDec {cons("CJPAdvice")}
      "before" Id "(" {FormalParam ","}* ")" ->
         CJPAdviceSpec {cons("CJPBefore")}
      "after" Id "(" {FormalParam ","}* ")" -> 
         CJPAdviceSpec {cons("CJPAfter")}
      "after" Id "(" {FormalParam ","}* ")" "returning" 
           CJPSingleParam?
         ->CJPAdviceSpec {cons("CJPAfterReturning")}
      "after" Id "(" {FormalParam ","}* ")" "throwing"
            CJPSingleParam?
         -> CJPAdviceSpec {cons("CJPAfterThrowing")}
      "(" FormalParam? ")" -> CJPSingleParam
        {cons("CJPSingleParam")}
         ResultType "around" Id "(" {FormalParam ","}* ")"
         -> CJPAdviceSpec {cons("CJPAround")}

   lexical syntax
      "exhibit" -> Keyword
      "joinpoint" -> PseudoKeyword



  

CJP – Grammar Definition

"exhibit" MethodName "(" {FormalParam ","}* ")" Block "("  {Expr ","}* ")"
     -> Expr{cons("ClosureJoinpoints")}

"exhibit" MethodName Block -> Expr {cons("ShortClosureJoinpoints")}



  

Programming in CJP with Eclipse



  

But It Will Not Compile..



  

CJP – Code Transformation



  

CJP – Replacing ajc with AWESOME*



  

CJP – Behind the Scenes

Original Code Transformed Code



  

CJP Implementation

● Passed all tests from original prototype

– Few invalid tests were fixed
● CJP programs runnable in Eclipse

– Looks like regular AspectJ project
● Non trivial extension

– Used context-aware code transformations



  

Context-aware Code Transformation



  

Context-aware Code Transformation

Need to know about the 
joinpoint declaration when 
transforming the base code!



  

Another example: COOL



  

AJDT Markers for COOL



  

Another example: EJP

● Implemented features that were omitted in 
original prototype

– Pointcut arguments
– Policy enforcement

● Used the 'preweave' extension in the 
AWESOME's weaving model



  

Using the preweave phase

Empty pointcut

Extending pointcut in 
base code



  

Related Work

● Language Workbenches

– [Fowler, 2005]  Language workbenches: The killer-app for 
domain specific languages. 

– [Kats and Visser, 2010]  The Spoofax language workbench: 
Rules for declarative specification of languages and IDEs.

● The AspectBench Compiler

– [P.A, A.S.C, L.H, S.K, J.L, O.L, O.M, D.S, G.S, and J.T, 2005]  
abc: an extensible AspectJ compiler. 

● AOP Composition Frameworks

– [Lorenz and Kojarski, 2007]  Understanding aspect interaction, 
co-advising and foreign advising.

– [Kojarski and Lorenz, 2007]  Awesome: An aspect co-weaving 
system for composing multiple aspect-oriented extensions.



  

Tools Comparison

abc AWESOME Spoofax Workbench

Tools for custom syntax definition

Extensible Java/AspectJ syntax

Tools for code transformation

Editing tools for end-programmers

Ability to define the weaving 
semantics required for DSAL

Works with a recent version of 
AspectJ

Compliance with AJDT



  

Conclusion
● A novel design for a workbench that produces 

first-class AspectJ extensions

– A modern alternative to abc
– AOP composition framework used as a back-

end to achieve first-class DSL
– DSAL code passed to the back-end to achieve 

first-class AOP language
● Validation

– Prototype comprising Spoofax and AWESOME*

– Plug-ins for COOL, EJP and CJP
● Future Work

– Evaluate AspectJ extensions in real-world cases
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