

A Language Workbench for Creating
Production-Ready Extensions to AspectJ

Arik Hadas
Dept. of Mathematics and Computer Science

The Open University of Israel

Advisor:

David H. Lorenz

Motivation

“Explicit join points looks
 interesting, let's evaluate it”

abc? AWESOME?
Spoofax? xtext?

Our Research Goal

● Tool for the development, evaluation and
production of extensions for AspectJ

– Like abc
● Workbench, not a compiler

– Provide common editing tools
– Compatible with AOP development tools

● Generate production-ready extensions
– Work with a commonly used version of AspectJ
– Proper support for programming in multiple

extensions simultaneously

 Limitations of the AspectBench
Compiler (abc)

● Used to be the default choice for
implementing AspectJ extensions

● Not suitable for development of new
extensions

– Does not work with recent versions of AspectJ

● Not suitable for evaluation of new
extensions

– Does not provide development tools
– No support for advanced weaving semantics

Language Workbench (LW) for Java

Language WorkbenchLanguage Workbench

javacjavac

DSL Code

Java

Bytecode

Language Workbench (LW) for Java

Language WorkbenchLanguage Workbench

javacjavac

DSL Code

Java

Bytecode

Will It Work for AspectJ?

Language WorkbenchLanguage Workbench

javacjavac

Java

Bytecode

No
Aspects

DSL Code
Extension
Code

Will It Work for AspectJ?

Language WorkbenchLanguage Workbench

javacjavac

Java

Bytecode

No
Aspects

DSL Code
Extension
Code

Replacing javac with ajc

Language WorkbenchLanguage Workbench

Extension
Code

Java AspectJ

Bytecode
Woven Bytecode

javac ajc

No Multiple
 DSALs

AOP Composition Framework (CF)
● To work with multiple AspectJ extensions

simultaneously, one will need to define:

– Weaving semantics for co-advising
– Weaving semantics for foreign advising

● CF Allows to define the required semantics

– As opposed to ajc
● CF does not provide editing tools

LW vs CF

Language
Workbench

AOP
Composition
Framework

Tools for creation &
usage of languages

Defining weaving
semantics needed for
DSALs

Can We Enjoy Both Worlds?

Language
Workbench

AOP
Composition
Framework

?

Tools for creation &
usage of languages

Defining weaving
semantics needed for
DSALs

Will a naive combination of the two be a
proper solution?

Naive Combination of LW and CF

Language WorkbenchLanguage Workbench

DSAL Code

AspectJ

Woven Bytecode

ajc Composition Framework

But We Still Lack AOP Tools..

Language WorkbenchLanguage Workbench

DSAL Code

AspectJ

Woven Bytecode

 Composition Framework

Browsing

Debugging

Compiling

Traditional LW Architecture

Language WorkbenchLanguage Workbench

DSAL Code

AspectJ

Woven Bytecode

 Composition Framework

Code Transformation

Our Workbench Architecture

 Composition Framework Composition Framework

DSAL Code

Woven Bytecode

Code Transformation

Language WorkbenchLanguage Workbench

AspectJ DSAL Code

Compliance with AOP tools

Our Workbench Architecture

 Composition Framework Composition Framework

DSAL Code

Woven Bytecode

Code Transformation

Language WorkbenchLanguage Workbench

DSAL Code

Standalone
DSAL compiler

Can generate debugging &
 browsing information

Compliance with AOP tools

Validation

● We implemented a workbench
● We Implemented third-party extensions that

were proposed to AspectJ
– COOL
– Closure Join Points (CJP)
– Explicit Join Points (EJP)

● Available as an open source
– https://github.com/OpenUniversity

Our Workbench Implementation

AWESOME*AWESOME*

DSAL Code

Woven Bytecode

SpoofaxSpoofax

DSAL Code

AWESOME

ajcajc

aspectjweaveraspectjweaver

aspectjtoolsaspectjtools

AWESOMEAWESOME

Pluggable
weaver

Pluggable
weaver

aspectjtoolsaspectjtools

AspectJ Code AspectJ Code

Code Transformation

Enhancing AWESOME

ajcajc

aspectjweaveraspectjweaver

aspectjtoolsaspectjtools

AspectJ Code

AWESOME*AWESOME*

Pluggable
weaver

Pluggable
weaver

Extension Code

Pluggable toolsPluggable tools
Code Transformation

AWESOME's Weaving Model

List<BcelShadow> around(MultiMechanism mm, LazyClassGen clazz):
 reifyClass(mm,clazz) { ... }

public List<IEffect> match(BcelShadow shadow) { ... }

public List<IEffect> order(BcelShadow shadow, List<IEffect> effects) { ... }

void around(MultiMechanism mm, List effects, BcelShadow shadow):
 execution(void MultiMechanism.mix(List, BcelShadow)) { ... }

Extended Weaving Model

public void preweave(List<ResolvedType> types) { ... }

List<BcelShadow> around(MultiMechanism mm, LazyClassGen clazz):
 reifyClass(mm,clazz) { ... }

public List<IEffect> match(BcelShadow shadow) { ... }

public List<IEffect> order(BcelShadow shadow, List<IEffect> effects) { ... }

void around(MultiMechanism mm, List effects, BcelShadow shadow):
 execution(void MultiMechanism.mix(List, BcelShadow)) { ... }

So I've been asked to implement EJP...

CJP
COOL
EJP

AWESOME*

Weaving

Compilation

Code Transformation

Spoofax

Editing Tools

DSAL code

Woven
Bytecode

CJP – Grammar Definition

sorts JoinpointDeclaration
 context-free syntax
 "exhibit" MethodName "(" {FormalParam ","}* ")" Block
 "(" {Expr ","}* ")" ->
 Expr{cons("ClosureJoinpoints")}
 "exhibit" MethodName Block ->
 Expr {cons("ShortClosureJoinpoints")}

 JoinpointDeclaration -> AspectBodyDec
 "joinpoint" ResultType Id "(" {FormalParam ","}* ")"
 Throws? ";" ->
 JoinpointDeclaration{cons("JoinpointDeclaration")}
 (Anno | MethodMod)* CJPAdviceSpec Throws? Block ->
 AdviceDec {cons("CJPAdvice")}
 "before" Id "(" {FormalParam ","}* ")" ->
 CJPAdviceSpec {cons("CJPBefore")}
 "after" Id "(" {FormalParam ","}* ")" ->
 CJPAdviceSpec {cons("CJPAfter")}
 "after" Id "(" {FormalParam ","}* ")" "returning"
 CJPSingleParam?
 ->CJPAdviceSpec {cons("CJPAfterReturning")}
 "after" Id "(" {FormalParam ","}* ")" "throwing"
 CJPSingleParam?
 -> CJPAdviceSpec {cons("CJPAfterThrowing")}
 "(" FormalParam? ")" -> CJPSingleParam
 {cons("CJPSingleParam")}
 ResultType "around" Id "(" {FormalParam ","}* ")"
 -> CJPAdviceSpec {cons("CJPAround")}

 lexical syntax
 "exhibit" -> Keyword
 "joinpoint" -> PseudoKeyword

CJP – Grammar Definition

"exhibit" MethodName "(" {FormalParam ","}* ")" Block "(" {Expr ","}* ")"
 -> Expr{cons("ClosureJoinpoints")}

"exhibit" MethodName Block -> Expr {cons("ShortClosureJoinpoints")}

Programming in CJP with Eclipse

But It Will Not Compile..

CJP – Code Transformation

CJP – Replacing ajc with AWESOME*

CJP – Behind the Scenes

Original Code Transformed Code

CJP Implementation

● Passed all tests from original prototype

– Few invalid tests were fixed
● CJP programs runnable in Eclipse

– Looks like regular AspectJ project
● Non trivial extension

– Used context-aware code transformations

Context-aware Code Transformation

Context-aware Code Transformation

Need to know about the
joinpoint declaration when
transforming the base code!

Another example: COOL

AJDT Markers for COOL

Another example: EJP

● Implemented features that were omitted in
original prototype

– Pointcut arguments
– Policy enforcement

● Used the 'preweave' extension in the
AWESOME's weaving model

Using the preweave phase

Empty pointcut

Extending pointcut in
base code

Related Work

● Language Workbenches

– [Fowler, 2005] Language workbenches: The killer-app for
domain specific languages.

– [Kats and Visser, 2010] The Spoofax language workbench:
Rules for declarative specification of languages and IDEs.

● The AspectBench Compiler

– [P.A, A.S.C, L.H, S.K, J.L, O.L, O.M, D.S, G.S, and J.T, 2005]
abc: an extensible AspectJ compiler.

● AOP Composition Frameworks

– [Lorenz and Kojarski, 2007] Understanding aspect interaction,
co-advising and foreign advising.

– [Kojarski and Lorenz, 2007] Awesome: An aspect co-weaving
system for composing multiple aspect-oriented extensions.

Tools Comparison

abc AWESOME Spoofax Workbench

Tools for custom syntax definition

Extensible Java/AspectJ syntax

Tools for code transformation

Editing tools for end-programmers

Ability to define the weaving
semantics required for DSAL

Works with a recent version of
AspectJ

Compliance with AJDT

Conclusion
● A novel design for a workbench that produces

first-class AspectJ extensions

– A modern alternative to abc
– AOP composition framework used as a back-

end to achieve first-class DSL
– DSAL code passed to the back-end to achieve

first-class AOP language
● Validation

– Prototype comprising Spoofax and AWESOME*

– Plug-ins for COOL, EJP and CJP
● Future Work

– Evaluate AspectJ extensions in real-world cases

Arik Hadas
Dept. of Mathematics and Computer Science

The Open University of Israel

arik.hadas@openu.ac.il

https://github.com/OpenUniversity

Thank You!

mailto:arik.hadas@openu.ac.il

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

