
Arik Hadas
Dept. of Mathematics and Computer Science

The Open University of Israel

Joint Work With:

David H. Lorenz

Toward Practical
 Language Oriented Modularity

Domain Specific Aspect Languages

DSLs DSALsDSALs AOP

KALA

COOL

RIDL

AspectGrid

Racer

AO4SQL

Language Oriented Modularity (LOM)

● A methodology that puts Domain Specific
Aspect Languages (DSALs) at the center of
the software modularization process.

Java

Code

Language Oriented Modularity (LOM)

● A methodology that puts Domain Specific
Aspect Languages (DSALs) at the center of
the software modularization process.

– On-demand development and use of DSALs

DSAL-1DSAL-2

DSAL-3

Code

Pros of LOM

● Domain specific languages
– Programming with more declarative and

simpler languages than general purpose
aspect languages (GPALs)

● Separation of crosscutting concerns
– Improved software modularity compared to

general purpose languages or DSLs

Cons of LOM

● Cost
– Definition and implementation cost is higher

● Effectiveness
– Use of DSALs (compared to GPALs) is less

effective than DSLs (compared to GPLs)

LOP &
DSLs

LOM &
DSALs

Cost-effectiveness

Working Hypothesis

● Making LOM more like LOP could make LOM
more practical

– DSALs more like DSLs (definition; implementation)

– DSALs more like GPALs (use)

DSLs DSALs GPAL

Definition; Implementation

Use

Key Idea

● Transform DSALs into a kernel language that
is based on a GPAL

– No need to implement a weaver per DSAL

– Aspect development tools for the GPAL would
work with the DSAL code

Weaver Plugin Code Transformation

Outline

● Introduction
● Problem
● Solution
● Evaluation
● Conclusion

Problem Preview

DSLs DSALs

Language Definition

Language Implementation

Language Use

Language Definition

● Syntax
– Domain-specific notations and abstraction

● Semantics
– Complex to define the weaving semantics when

multiple DSALs are being used simultaneously

DSLs DSALs

Domain-Specific Syntax

Weaving Semantics Not Needed

Language Implementation

● Language workbenches are for DSLs
– Produces a parser for the custom syntax

– Produces a transformation to some GPL

● No equivalent tool for DSALs
– The implementation of weaving semantics is

generally a costly task

DSLs DSALs

Parsing

Compilation

Language Use

● Programming with a DSL
– Language workbench produces editing tools

● Programming with a DSAL
– Simpler language but lacks development tools

DSLs DSALs

Common Editing Tools

Build Tools

Aspect Development Tools Not Needed

Outline

● Introduction
● Problem
● Solution
● Evaluation
● Conclusion

Solution Preview

LOM &
DSALs

Practical
LOM

Language Definition

Language Implementation

Language Use

Transformation-based Approach

● Restriction on crosscutting concerns
– CCC that could be modularized using a GPAL

● Transform DSALs into a kernel language that
is based on a GPAL

– DSALs can be transformed into that GPAL

– No need to implement a weaver per DSAL

– Aspect development tools for the GPAL would
work with the DSAL code

GPAL-based Kernel Language

● The kernel language provides constructs for
resolving possible multi-DSALs conflicts

– Hide joinpoint shadows in order to resolve
foreign advising issues

– Sort advise to resolve co-advising issues

● During transformation of DSAL code these
constructs can be defined declaratively

– Annotate join points that should be hidden

– Annotate advice so they could be sorted

● The simpler the DSALs are, the less common
these conflicts are

Leveraging Language Workbench

● Most of the DSAL development can be done
using a language workbench

– Grammar definition for the DSAL

– Transformation of the DSAL to the kernel language

● The supportive tools provided by a language
workbench reduce the implementation cost

● Editing tools for programming with the DSALs
can be generated by the language workbench

Outline

● Introduction
● Problem
● Solution
● Evaluation
● Conclusion

Practical LOM in oVirt

● We applied LOM to oVirt
– Implemented a DSAL named oVirtSync

– Used oVirtSync to modularize synchronization in
the oVirt project

● Experience
– Relatively easy to define

– Relatively easy to implement

– Relatively easy to use

oVirt – Open Virtualization

● oVirt
– Open-source enterprise application for providing

and managing virtual data centers

– The upstream of Red Hat Enterprise Virtualization

– Alternative to VMware's vSphere

● oVirt-Engine
– The control center of oVirt

– Executes operations it gets from clients

– Reports the up-to-date status of the data center

oVirt-Engine in oVirt's Architecture

Synchronization in oVirt-Engine

● The core design of oVirt-Engine is based on
the COMMAND design pattern

– All commands inherit from a common root class

– Synchronous and asynchronous commands

● Some commands cannot be executed
simultaneously

– oVirt-Engine prevents such conflicts

– Special locking mechanism was implemented

– Such conflict produced an error message that is
returned to the client

Crosscutting Concern Problem

● We have found that synchronization related
code crosscut many modules in oVirt-Engine

– Scattered across most of the commands
● Defines the entities to lock, scope of the locks,

error messages, etc.
– Tangled in the common root, CommandBase

● When to acquire locks, how to build locks,
when to release locks, etc.

Demonstration – oVirtSync

https://youtu.be/uj80yWutQak

Outline

● Introduction
● Problem
● Solution
● Evaluation
● Conclusion

Related Work

● DSAL Workbench
– [Hadas and Lorenz, 2015] Demanding first-class equality for

domain specific aspect languages.

● Transformation-based AOP Composition Frameworks
– [Shonle at al., 2003] XAspects: An extensible system for

domain specific aspect languages.

– [Tanter, 2006] Aspects of composition in the Reflex AOP kernel.

● SpecTackle
– [Lorenz and Mishali, 2012] SpecTackle: Toward a specification

based DSAL composition process.

Summary
● We bring the DSAL development process one

step closer to the development process of DSLs

– For a class of DSALs that are in a sense
reducible to a GPAL

● That way, their cost-effectiveness is improved

– The implementation cost is reduced
– The definition cost could be reduced
– The effectiveness of using them is increased

● That may make the LOM methodology practical
for real-world software development process

Arik Hadas and David H. Lorenz
Dept. of Mathematics and Computer Science

The Open University of Israel

arik.hadas@openu.ac.il

https://github.com/OpenUniversity

Thank You!

https://youtu.be/uj80yWutQak

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

