
Arik Hadas
Dept. of Mathematics and Computer Science

The Open University of Israel

Joint Work With:

David H. Lorenz

Toward Practical
 Language Oriented Modularity



Domain Specific Aspect Languages

DSLs DSALsDSALs AOP

KALA

COOL

RIDL

AspectGrid

Racer

AO4SQL



Language Oriented Modularity (LOM)

● A methodology that puts Domain Specific 
Aspect Languages (DSALs) at the center of 
the software modularization process. 
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Language Oriented Modularity (LOM)

● A methodology that puts Domain Specific 
Aspect Languages (DSALs) at the center of 
the software modularization process. 

– On-demand development and use of DSALs
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Pros of LOM

● Domain specific languages
– Programming with more declarative and 

simpler languages than general purpose 
aspect languages (GPALs)

● Separation of crosscutting concerns 
– Improved software modularity compared to 

general purpose languages or DSLs



Cons of LOM

● Cost
– Definition and implementation cost is higher

● Effectiveness
– Use of DSALs (compared to GPALs) is less 

effective than DSLs (compared to GPLs)
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Working Hypothesis

● Making LOM more like LOP could make LOM 
more practical

– DSALs more like DSLs (definition; implementation)

– DSALs more like GPALs (use)
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Key Idea

● Transform DSALs into a kernel language that 
is based on a GPAL

– No need to implement a weaver per DSAL

– Aspect development tools for the GPAL would 
work with the DSAL code 

Weaver Plugin Code Transformation
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Problem Preview
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Language Definition

● Syntax  
– Domain-specific notations and abstraction 

● Semantics
– Complex to define the weaving semantics when 

multiple DSALs are being used simultaneously
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Language Implementation

● Language workbenches are for DSLs
– Produces a parser for the custom syntax

– Produces a transformation to some GPL

● No equivalent tool for DSALs
– The implementation of weaving semantics is 

generally a costly task 
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Language Use

● Programming with a DSL
– Language workbench produces editing tools 

● Programming with a DSAL
– Simpler language but lacks development tools

DSLs DSALs
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Solution Preview
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Transformation-based Approach

● Restriction on crosscutting concerns 
– CCC that could be modularized using a GPAL 

● Transform DSALs into a kernel language that 
is based on a GPAL

– DSALs can be transformed into that GPAL

– No need to implement a weaver per DSAL

– Aspect development tools for the GPAL would 
work with the DSAL code



GPAL-based Kernel Language

● The kernel language provides constructs for 
resolving possible multi-DSALs conflicts

– Hide joinpoint shadows in order to resolve  
foreign advising issues

– Sort advise to resolve co-advising issues

● During transformation of DSAL code these 
constructs can be defined declaratively  

– Annotate join points that should be hidden

– Annotate advice so they could be sorted

● The simpler the DSALs are, the less common 
these conflicts are



Leveraging Language Workbench

● Most of the DSAL development can be done 
using a language workbench

– Grammar definition for the DSAL

– Transformation of the DSAL to the kernel language

● The supportive tools provided by a language 
workbench reduce the implementation cost

● Editing tools for programming with the DSALs 
can be generated by the language workbench
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Practical LOM in oVirt

● We applied LOM to oVirt
– Implemented a DSAL named oVirtSync

– Used oVirtSync to modularize synchronization in 
the oVirt project

● Experience
– Relatively easy to define

– Relatively easy to implement

– Relatively easy to use



oVirt – Open Virtualization

● oVirt 
– Open-source enterprise application for providing 

and managing virtual data centers

– The upstream of Red Hat Enterprise Virtualization

– Alternative to VMware's vSphere

● oVirt-Engine
– The control center of oVirt

– Executes operations it gets from clients

– Reports the up-to-date status of the data center



oVirt-Engine in oVirt's Architecture



Synchronization in oVirt-Engine

● The core design of oVirt-Engine is based on 
the COMMAND design pattern

– All commands inherit from a common root class

– Synchronous and asynchronous commands

● Some commands cannot be executed 
simultaneously

– oVirt-Engine prevents such conflicts

– Special locking mechanism was implemented

– Such conflict produced an error message that is 
returned to the client



Crosscutting Concern Problem

● We have found that synchronization related 
code crosscut many modules in oVirt-Engine

– Scattered across most of the commands
● Defines the entities to lock, scope of the locks,      

error messages, etc.
– Tangled in the common root, CommandBase

● When to acquire locks, how to build locks,             
when to release locks, etc.



Demonstration – oVirtSync

https://youtu.be/uj80yWutQak
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Related Work

● DSAL Workbench
– [Hadas and Lorenz, 2015]  Demanding first-class equality for 

domain specific aspect languages.

● Transformation-based AOP Composition Frameworks
– [Shonle at al., 2003]  XAspects: An extensible system for 

domain specific aspect languages.

– [Tanter, 2006]  Aspects of composition in the Reflex AOP kernel.

● SpecTackle
– [Lorenz and Mishali, 2012]  SpecTackle: Toward a specification 

based DSAL composition process.



Summary
● We bring the DSAL development process one 

step closer to the development process of DSLs

– For a class of DSALs that are in a sense 
reducible to a GPAL

● That way, their cost-effectiveness is improved

– The implementation cost is reduced
– The definition cost could be reduced
– The effectiveness of using them is increased

● That may make the LOM methodology practical 
for real-world software development process
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