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Language Oriented Modularity (LOM)

● Methodology
– For modularization via development and use of 

Domain Specific Aspect Languages (DSALs)

● Theory
– Very powerful methodology

● Practice
– Underutilized in modern projects



oVirt – Open Virtualization

● Open source enterprise application for 
providing and managing virtual data centers
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Contribution in a Nutshell

● Practical LOM
– Make the DSAL development process more like 

that of DSLs



Outline

● Introduction
● Problem
● Approach
● Evaluation
● Conclusion



Language Oriented Modularity (LOM)

● A methodology that puts Domain Specific 
Aspect Languages (DSALs) at the center of 
the software modularization process.
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Pros of LOM

● Separation of crosscutting concerns 
– Improved software modularity compared to GPLs or 

DSLs

● Domain specific languages
– Programming in more declarative and simpler 

languages than GPALs

DSLs DSALsDSALs AOP
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Cons of LOM

● Cost
– Definition and implementation cost is higher

● Effectiveness
– Use of DSALs (compared to GPALs) is less 

effective than DSLs (compared to GPLs)

DSLs  DSALs

Cost-effectiveness



Working Hypothesis

● Making LOM more like LOP could make LOM 
more practical

– DSALs more like DSLs (definition; implementation)

– DSALs more like GPALs (use)

DSLs DSALs GPAL

Definition; Implementation

Use



Problem Preview
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Language Definition

● Syntax  
– Domain-specific notations and abstraction 

● Semantics
– Complex to define the weaving semantics when 

multiple DSALs are being used simultaneously

DSLs DSALs

Domain-Specific Syntax

Weaving Semantics Not Needed



Language Implementation

● Language workbenches are for DSLs
– Produces a parser for the custom syntax

– Produces a transformation to some GPL

● No equivalent tool for DSALs
– The implementation of weaving semantics is 

generally a costly task 

DSLs DSALs

Parsing

Compilation



Language Use

● Programming with a DSL
– Language workbench produces editing tools 

● Programming with a DSAL
– Simpler language but lacks development tools

DSLs DSALs

Common Editing Tools

Build Tools

Aspect Development Tools Not Needed
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Key Idea

● Transform DSALs into a kernel language that 
is based on a GPAL

– No need to implement a weaver per DSAL

– Aspect development tools for the GPAL would 
work with the DSAL code 

Weaver Plugin Code Transformation



Transformation-based Approach

● Restriction on crosscutting concerns 
– CCC that could be modularized using a GPAL 

● DSALs can be transformed into that GPAL
– Aspect development tools for the GPAL would 

work with the DSAL code

– Most of the developers program with simpler 
and more declarative languages



GPAL-based Kernel Language

● The kernel language provides constructs for 
resolving possible multi-DSALs conflicts

– Hide joinpoint shadows in order to resolve  
foreign advising issues

– Sort advise to resolve co-advising issues

● During transformation of DSAL code these 
constructs can be defined declaratively  

– Annotate join points that should be hidden

– Annotate advice so they could be sorted

● The simpler the DSALs are, the less common 
these conflicts are



Leveraging Language Workbench

● Most of the DSAL development can be done 
using a language workbench

– Grammar definition for the DSAL

– Transformation of the DSAL to the kernel language

● Supportive tools provided by a language 
workbench 

– Reduce the implementation cost

● Editing tools for programming with the DSALs
– Generated by the language workbench
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LOM for oVirt

● We implemented DSALs for 3 crosscutting 
concerns found in the oVirt project

– Synchronization

– Permission checks

– Auditing



Demonstration - oVirtSync

 

● Developing a DSAL for synchronization in oVirt:

    https://youtu.be/uj80yWutQak
● Resolving synchronization in oVirt with DSAL:

 https://youtu.be/PTy9rYDQSo4
● The code is available on GitHub

 https://github.com/OpenUniversity



Implementation Effort

● One time effort
– Compiler for the kernel language

● Per-application effort
– Compile oVirt with AspectJ compiler

● The produced DSALs were
– Relatively easy to define

– Relatively easy to implement

– Relatively easy to use

https://youtu.be/uj80yWutQak
https://youtu.be/PTy9rYDQSo4
https://github.com/OpenUniversity
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Related Work

● Domain Specific Aspect Languages
– [Fabry at al., 2015]  A Taxonomy of Domain-Specific Aspect 

Languages.

● Transformation-based AOP Composition Frameworks
– [Shonle at al., 2003]  XAspects: An extensible system for domain 

specific aspect languages.

– [Tanter, 2006]  Aspects of composition in the Reflex AOP kernel.

● SpecTackle
– [Lorenz and Mishali, 2012]  SpecTackle: Toward a specification 

based DSAL composition process.



Summary

● We bring the DSAL development process one 
step closer to the development process of DSLs

– For a class of DSALs that are in a sense 
reducible to a GPAL

● That way, their cost-effectiveness is improved

– The implementation cost is reduced
– The definition cost could be reduced
– The effectiveness of using them is increased

● That may make the LOM methodology practical 
for real-world software development process



  

Conclusion
● New classes of DSALs

– Application specific
– Disposable
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Conclusion
● New classes of DSALs

– Application specific
– Disposable

● Challenge general conception of language design

– Lower reuse may improve cost-effectiveness
● Agile-like software modularization process

– Start with disposable DSALs and gradually 
move to reusable DSALs
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