

Language Oriented Modularity:
 From Theory to Practice

Arik Hadas

Dept. of Mathematics and Computer Science
The Open University of Israel

Adviser:
David H. Lorenz

Language Oriented Modularity (LOM)

● Methodology
– For modularization via development and use of

Domain Specific Aspect Languages (DSALs)

● Theory
– Very powerful methodology

● Practice
– Underutilized in modern projects

oVirt – Open Virtualization

● Open source enterprise application for
providing and managing virtual data centers

Scattered Code in oVirt
MigrateVmCommand AddDiskCommand

Auditing

synchronization

Permissions

Tangled Code in oVirt

synchronization

permissions

synchronization

CommandBase

Problem in a Nutshell

● General Purpose
Aspect Languages
(GPALs)

– Too complex to use

GPAL

Additional
Modularization

Layer

Complexity of
Programming

Language

Additional
Modularization

Layer

Problem in a Nutshell

● General Purpose
Aspect Languages
(GPALs)

– Too complex to use

● Domain Specific
Aspect Languages
(DSALs)

– Too complex to develop

GPAL

Additional
Modularization

Layer

Complexity of
Programming

Language

Cost-effectiveness of
Development and Use

Additional
Modularization

Layer

DSAL

Contribution in a Nutshell

● Practical LOM
– Make the DSAL development process more like

that of DSLs

Outline

● Introduction
● Problem
● Approach
● Evaluation
● Conclusion

Language Oriented Modularity (LOM)

● A methodology that puts Domain Specific
Aspect Languages (DSALs) at the center of
the software modularization process.

Java

Code

Language Oriented Modularity (LOM)

● A methodology that puts Domain Specific
Aspect Languages (DSALs) at the center of
the software modularization process.

– On-demand development and use of DSALs

Code

Java

Language Oriented Modularity (LOM)

● A methodology that puts Domain Specific
Aspect Languages (DSALs) at the center of
the software modularization process.

– On-demand development and use of DSALs

DSAL-1DSAL-2

DSAL-3

Code

Pros of LOM

● Separation of crosscutting concerns
– Improved software modularity compared to GPLs or

DSLs

● Domain specific languages
– Programming in more declarative and simpler

languages than GPALs

DSLs DSALsDSALs AOP

COOL
RIDL

AspectGrid

Racer

KALA

Cons of LOM

● Cost
– Definition and implementation cost is higher

● Effectiveness
– Use of DSALs (compared to GPALs) is less

effective than DSLs (compared to GPLs)

DSLs DSALs

Cost-effectiveness

Working Hypothesis

● Making LOM more like LOP could make LOM
more practical

– DSALs more like DSLs (definition; implementation)

– DSALs more like GPALs (use)

DSLs DSALs GPAL

Definition; Implementation

Use

Problem Preview

DSLs DSALs

Language Definition

Language Implementation

Language Use

Language Definition

● Syntax
– Domain-specific notations and abstraction

● Semantics
– Complex to define the weaving semantics when

multiple DSALs are being used simultaneously

DSLs DSALs

Domain-Specific Syntax

Weaving Semantics Not Needed

Language Implementation

● Language workbenches are for DSLs
– Produces a parser for the custom syntax

– Produces a transformation to some GPL

● No equivalent tool for DSALs
– The implementation of weaving semantics is

generally a costly task

DSLs DSALs

Parsing

Compilation

Language Use

● Programming with a DSL
– Language workbench produces editing tools

● Programming with a DSAL
– Simpler language but lacks development tools

DSLs DSALs

Common Editing Tools

Build Tools

Aspect Development Tools Not Needed

Outline

● Introduction
● Problem
● Approach
● Evaluation
● Conclusion

Key Idea

● Transform DSALs into a kernel language that
is based on a GPAL

– No need to implement a weaver per DSAL

– Aspect development tools for the GPAL would
work with the DSAL code

Weaver Plugin Code Transformation

Transformation-based Approach

● Restriction on crosscutting concerns
– CCC that could be modularized using a GPAL

● DSALs can be transformed into that GPAL
– Aspect development tools for the GPAL would

work with the DSAL code

– Most of the developers program with simpler
and more declarative languages

GPAL-based Kernel Language

● The kernel language provides constructs for
resolving possible multi-DSALs conflicts

– Hide joinpoint shadows in order to resolve
foreign advising issues

– Sort advise to resolve co-advising issues

● During transformation of DSAL code these
constructs can be defined declaratively

– Annotate join points that should be hidden

– Annotate advice so they could be sorted

● The simpler the DSALs are, the less common
these conflicts are

Leveraging Language Workbench

● Most of the DSAL development can be done
using a language workbench

– Grammar definition for the DSAL

– Transformation of the DSAL to the kernel language

● Supportive tools provided by a language
workbench

– Reduce the implementation cost

● Editing tools for programming with the DSALs
– Generated by the language workbench

Outline

● Introduction
● Problem
● Approach
● Evaluation
● Conclusion

LOM for oVirt

● We implemented DSALs for 3 crosscutting
concerns found in the oVirt project

– Synchronization

– Permission checks

– Auditing

Demonstration - oVirtSync

● Developing a DSAL for synchronization in oVirt:

 https://youtu.be/uj80yWutQak
● Resolving synchronization in oVirt with DSAL:

 https://youtu.be/PTy9rYDQSo4
● The code is available on GitHub

 https://github.com/OpenUniversity

Implementation Effort

● One time effort
– Compiler for the kernel language

● Per-application effort
– Compile oVirt with AspectJ compiler

● The produced DSALs were
– Relatively easy to define

– Relatively easy to implement

– Relatively easy to use

https://youtu.be/uj80yWutQak
https://youtu.be/PTy9rYDQSo4
https://github.com/OpenUniversity

Outline

● Introduction
● Problem
● Approach
● Evaluation
● Conclusion

Related Work

● Domain Specific Aspect Languages
– [Fabry at al., 2015] A Taxonomy of Domain-Specific Aspect

Languages.

● Transformation-based AOP Composition Frameworks
– [Shonle at al., 2003] XAspects: An extensible system for domain

specific aspect languages.

– [Tanter, 2006] Aspects of composition in the Reflex AOP kernel.

● SpecTackle
– [Lorenz and Mishali, 2012] SpecTackle: Toward a specification

based DSAL composition process.

Summary

● We bring the DSAL development process one
step closer to the development process of DSLs

– For a class of DSALs that are in a sense
reducible to a GPAL

● That way, their cost-effectiveness is improved

– The implementation cost is reduced
– The definition cost could be reduced
– The effectiveness of using them is increased

● That may make the LOM methodology practical
for real-world software development process

Conclusion
● New classes of DSALs

– Application specific
– Disposable

Conclusion
● New classes of DSALs

– Application specific
– Disposable

DSALs
Reusability

Cross-domains Cross-applicationsApplication-specific

Too
general

Too
specificTailored to a

specific application

Reusability

Disposable
Aspect
Languages
(DispALs)

Conclusion
● New classes of DSALs

– Application specific
– Disposable

● Challenge general conception of language design

– Lower reuse may improve cost-effectiveness

Conclusion
● New classes of DSALs

– Application specific
– Disposable

● Challenge general conception of language design

– Lower reuse may improve cost-effectiveness
● Agile-like software modularization process

– Start with disposable DSALs and gradually
move to reusable DSALs

Arik Hadas
Dept. of Mathematics and Computer Science

The Open University of Israel

arik.hadas@openu.ac.il

https://github.com/OpenUniversity

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 30
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

